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Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human
inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a
variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features
of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation
and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often
used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology,
and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of
EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to
various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very
versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific
question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in
straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple
facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic
protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic
interventions.
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Introduction

Multiple sclerosis
Multiple sclerosis (MS) is the prototypical inflammatory
demyelinating disease of the central nervous system (CNS).
It is estimated to affect up to two million people worldwide
and some 100 000 people in the United Kingdom (Comp-
ston and Coles, 2008). Its clinical manifestations begin typi-
cally in the third and fourth decade of life, and it affects
women preferentially, with a female : male ratio approach-
ing 3:1. Thus, MS represents a prime cause of neurological
disability in young adults and has wide health, psychologi-
cal, economical and social consequences.

Clinically, MS manifests itself as neurological deficits that
frequently exhibit a relapsing and remitting pattern and can
resolve completely or leave residual deficits. The deficits can
involve any part of the CNS alone or in combination. Soma-
tosensory, pyramidal-motor and visual manifestations, the
latter due either to inflammatory demyelination in the affer-
ent visual pathways (optic neuritis) or in the efferent visual
pathways (ocular motility disorders such as internuclear oph-
thalmoplegia) are among the most common manifestations.
Eventually, many people with relapse-onset MS have fewer
clinically recognizable relapses and develop a gradual neuro-
logical progression.

In terms of the clinical course, there are several MS sub-
types: relapsing-remitting MS (RRMS), with relapses (flare-ups)
of disease separated by periods without clinical progression;
secondary progressive, SPMS, which represents the phase of
the disease where a gradual neurological deterioration (pro-
gression) follows a period of RR disease; primary progressive,
PPMS, affecting approximately 15% of people with MS where
the neurological deterioration is present from the onset, most
frequently without superimposed relapses. The rare variant
where a few acute exacerbations are superimposed on the
gradual PPMS-like course is called progressive-relapsing MS
(PRMS) (Lublin and Reingold, 1996).

Individuals who have experienced a single typical episode
of inflammatory demyelination suggestive of being the first
attack of MS but have not had a second event are said to have
clinically isolated syndrome (CIS).

There are four key pathological features of MS: (a) inflam-
mation, of complex pathogenesis, which is generally believed
to be the main trigger of the events leading to CNS tissue
damage in the majority of cases, although recent evidence
suggests that initial damage to neuroglial elements can
trigger secondary inflammation in some cases (Barnett and
Prineas, 2004); (b) demyelination, the hallmark of MS, where
the myelin sheath or the oligodendrocyte cell body is
destroyed by the inflammatory process; (c) axonal loss or
damage; and (d) gliosis (astrocytic reaction to CNS damage).
There is a certain degree of remyelination, which offers hope
for therapies aimed at enhancing endogenous repair mecha-
nisms in various experimental models (see below) but is
partial and its efficiency is limited.

In addition to the clinical heterogeneity there is patho-
logical heterogeneity, in terms of the relative proportion of
the above key pathological features and the components
of cellular and humoral immune response elements that
mediate the inflammation.

The pathological correlate of relapses is inflammation and
disruption of the blood–brain barrier (BBB), clinical relapses
being thought to correspond to fresh waves of inflammatory
cell infiltration in the CNS. The pathological correlate of
long-term disability and progression is irreversible axonal loss.
The acute MS lesion is characterized by inflammatory infil-
trates with various immune cells and active demyelination
(macrophages with myelin debris in their cytoplasm); when
this lesion becomes chronic, there is significant loss of myelin
with few if any inflammatory infiltrates and gliosis, which
gives lesions their ‘plaque’ appearance (Charcot, 1868).

Axonal loss is most severe in the chronic plaques, but it is
also present in what is known as the normal-appearing white
matter (NAWM), or normal-appearing brain tissue (NABT), to
take into account pathological changes in the normal appear-
ing gray matter as well (Trapp et al., 1998; Peterson et al.,
2001).

Diagnosis
As its name implies, the diagnosis of relapse-onset MS (also
known as disseminated sclerosis) requires evidence of dis-
semination in time and space of the inflammatory lesions.
Clinically, this has traditionally meant two or more demyeli-
nating attacks and clinical evidence of two or more parts of
the CNS being involved (Poser et al., 1983). The advent of
magnetic resonance imaging (MRI), however, has greatly
facilitated the diagnosis (and as a consequence the early treat-
ment) of MS. The introduction of the International Panel
(MacDonald) diagnostic criteria, which are strongly based on
MRI, allows early diagnosis by substituting the appearance of
new lesions for the requirement for a second demyelinating
event (McDonald et al., 2001; Polman et al., 2005).

The diagnostic hallmark of MS is the presence of hyper-
intense lesions on T2-weighted images; the typical location is
periventricular but posterior fossa, juxtacortical and spinal
lesions often coexist. The T2 lesions lack pathological speci-
ficity but are very useful for diagnosis. Acute lesions show
enhancement after administration of gadolinium, a paramag-
netic agent, on T1-weighted images. The pathological sub-
strate of Gadolinium enhancing T1 lesions is inflammatory
infiltration with recent breakdown of the BBB (Filippi et al.,
2002). Extensive evidence also shows that the brain and
spinal cord undergo atrophy in MS, the pathological sub-
strate for which is loss of axons (and myelin) (Lin et al., 2004;
Edwards et al., 2007).

The above conventional MRI measures are widely used in
clinical trials in MS as reliable outcome measures. In addition,
a number of quantitative MRI methods have contributed to
further understanding of the pathogenesis of MS. As in pathol-
ogy, there is ample evidence that the NABT is also abnormal by
sensitive MRI metrics. This partially explains the lack of tight
correlation between clinical and MRI activity in MS.

MS is undoubtedly an immune-mediated disease with
many features consistent with an autoimmune pathogenesis.
In addition to its many similarities to experimental autoim-
mune encephalomyelitis (EAE) (discussed below), its response
to immunosuppressive and immunomodulatory treatments
(some of which are discussed below) and its association with
other autoimmune diseases (Edwards and Constantinescu,
2004; Constantinescu and Gran, 2010), strong evidence in
support of its immune mediation comes from genetics. While
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its association with major histocompatibility complex (MHC)
genes has been well known for a long time, recent advances in
genome-wide association study methodology has allowed
identification of approximately another 16 genes, virtually all
of which are immune response genes (International Multiple
Sclerosis Genetics Consortium, 2008). Not surprisingly, an
enormous amount of work has been invested so far in finding
pathogenic immune pathways and immune modulation strat-
egies, both in EAE and in MS, relative to the amount of work
aimed directly at neuroprotection, repair or remyelination.

As a result, some immune response–modifying therapies
have entered clinical practice (many undergoing successful
translation from EAE studies) and have thus revolutionized
MS treatment, care and quality of life in the last two decades.
Although they are practically entirely aimed at the relapsing
stages of the disease where inflammation is a predominant
pathogenic mechanism, they have made a major impact
(Lim and Constantinescu, 2010b). In the progressive stages
of disease, axonal/ neuronal loss partially dissociated
from inflammation is more prominent, although low-grade
inflammation persists. Immunomodulatory/ immunosup-
pressive drugs may have a marginal effect against such low-
grade inflammation, but overall they have not shown success
in reducing progression. Neuroprotective and reparative
strategies need to be found for this stages (as well as for
PPMS), and, as discussed below, a few studies are promising in
EAE, but so far none of these has been translated into MS
treatment.

The disease-modifying treatments (DMTs) for MS have
been in large part based on the concepts of MS immuno-
pathogenesis. These concepts and consequently the thera-
peutic targets have evolved with time, and we will soon
witness the emergence of a third generation of MS DMT.

A detailed discussion of these established and emerging
drugs is beyond the scope of this review. The readers are
directed to recent reviews (Lim and Constantinescu, 2010b;
Rejdak et al., 2010; Yiu and Banwell, 2010).

The first line of treatment was represented by type 1
interferons (IFN) and glatiramer acetate (GA). Although
initial studies showed success both with IFN-alpha and IFN-
eta, the established DMT currently is IFN-beta (in several
preparations, including IFNb1a, Rebif and Avonex; and
IFNb1b, Betaferon, Betaseron, Extavia). Type I IFNs are
natural antiviral molecules produced with immunoregulatory
properties. GA (Copaxone), which was discovered due to
studies in EAE (Teitelbaum et al., 1971), is a copolymer of four
amino acids present in myelin basic protein, namely glutamic
acid, lysine, alanine and tyrosine. All first-generation DMT,
while varying in route and frequency of administration and
side effect profile, roughly reduce the relapse rate by 30% (or
more if given in CIS). They have marginal or no effects in
SPMS, PPMS or PRMS.

The currently approved DMT of a second generation is
natalizumab (Polman et al., 2006). This is a monoclonal anti-
body against VLA-4 integrin, which was shown in preclinical
studies in EAE to be required for T-cell entry into the CNS
(Yednock et al., 1992). Due to success in phase II and III clinical
trials, natalizumab was approved and is currently the most
potent licenced drug for MS, reducing relapse rate by 70% and
new MRI disease activity by 90% (Kappos et al., 2007). Natali-
zumab has been associated with a severe complication, which

prompted its transient removal from the market: progressive
multifocal leukoencephalitis (PML), an opportunistic CNS
infection with high mortality and morbidity, caused by the JC
virus, a human specific polyoma virus (Kleinschmidt-
DeMasters and Tyler, 2005; Langer-Gould et al., 2005).

Mitoxantrone is another drug licenced for MS. It is an
anthracene dione used as a cancer chemotherapeutic agent
and is also very effective in more aggressive MS, reducing
relapses and showing a potential effect against progressive
disease. Mitoxantrone has cumulative cardiotoxicity reduc-
ing its long-term use and is associated with a risk of promy-
elocytic leukaemia.

Azathioprine, a less potent immunosuppressive agent, has
the advantage of oral administration and is effective in reduc-
ing relapse frequency and possibly disease progression
(Casetta et al., 2007). It also reduces the number of new brain
inflammatory lesions (Massacesi et al., 2005). It is well toler-
ated and is considered appropriate maintenance treatment
for patients with frequent relapses requiring steroids (Casetta
et al., 2007).

Drugs that have successfully completed or in phase III
studies and are promising DMT in the not so distant future, as
well as some drugs successful in phase II studies and under-
going phase III studies are listed in Table 1.

Slightly further at the horizon are the future cellular
therapies. The only such treatment that has entered clinical
practice, albeit not in large controlled studies, is haema-
topoietic stem cell transplantation, thought to represent a
drastic form of immunosuppression, which may reset an
autoimmune-prone immune system, and has at least theo-
retical potential for neurorepair (Muraro and Uccelli, 2010).
More than 400 patients with MS, in large part SPMS, have
received this treatment within or outside of trials. This
approach and its relationship with knowledge derived from
EAE are discussed later in this review.

The interaction between multiple components of the
immune system and all elements of the CNS determine the
pathogenesis of MS. The most widely accepted current con-
cepts are schematically represented in Figure 1.

Briefly, T cells in the periphery become activated by a viral
or another infectious antigen or a superantigen. These show
molecular similarity (mimicry) with some CNS antigen (Sos-
pedra and Martin, 2005). These T cells are capable of produc-
ing inflammatory cytokines and may be differentiated or
have the potential to differentiate on activation into Th1
(producing IFN-gamma) or Th17 cells (IL-17, IL-22, IL-21) or
cells producing both (McFarland and Martin, 2007). Acti-
vated T cells up-regulate integrins such as VLA-4 and are
capable of crossing the BBB. Through the permeabilized BBB,
attracted by chemokine release, other immune cells includ-
ing B cells and monocytes/macrophages migrate into the
CNS. There, they encounter the cognate antigen, probably
derived from myelin antigen, presented by CNS resident or
immigrant antigen-presenting cells (APC). These can be
macrophages/microglia and in certain instances dendritic
cells or astrocytes. On encountering the antigen, such autore-
active T cells are reactivated and differentiate, producing
their signature cytokines, which activate the neighbouring
immune or neural cells and attract further inflammatory
cells into the CNS. Of these, it is especially activated mac-
rophages that are thought to indirectly and directly damage
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the CNS. Myelin is phagocytosed by macrophages (Barnett
et al., 2006). Elements of the humoral immune response
and soluble mediators also contribute to the pathology, via
complement activation, direct cytokine cytotoxicity, nitric
oxide, reactive oxygen and nitrogen species (Hemmer et al.,
2006). Plasma cells produce antibodies, which can bind and
activate complement or induce antibody-dependent cytotox-
icity. Th2 cells (producing IL-4) may enhance antibody pro-
duction. CD8 (cytotoxic) T cells may enhance the damage
through further cytokine production as well as granzyme and
perforin production and can directly transect axons (Fletcher
et al., 2010). The resolution of inflammation, which can be
partial and subject to recrudescence, occurs when anti-
inflammatory cytokines (e.g. IL-10) and other immunoregu-
latory mechanisms such as regulatory T cells (Treg) or NK
cells come into play. The consequence is that the myelin is
destroyed and typically lacks full regeneration potential,
especially after repeated injury, and the axons degenerate, in
part because they are devoid of myelin and more exposed and
deprived of trophic support, in part through wallerian degen-
eration and metabolic injury (Piaton et al., 2009).

EAE
Many elements of this cascade of events have been identified,
tested or confirmed in EAE. From the pathogenesis point of
view, therefore, EAE is a good model for studying MS mecha-
nisms, even more so than for testing or developing drugs
(Farooqi et al., 2010).

A major difference between MS and EAE is that the latter
requires an external immunization step to develop, whereas
in humans, the sensitization to autoantigens is obviously not
artificially induced (Gran et al., 2007). Sensitization to myelin
antigens in EAE typically occurs through the use of adjuvant,
usually containing bacterial components highly capable of
activating the innate immune system via pattern recognition
receptors (Libbey and Fujinami, 2010). In EAE, the inducing
antigens are known, whereas in MS, there is no unique iden-
tified antigen. Thus, important differences between these
conditions may be due to how autoreactive T cells are primed
and activated.

More recently, however, a refined model of pathogenesis
has been put forward by t Hart and colleagues, in which three
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Figure 1
Schematic diagram of some of the key pathological features of EAE pathogenesis. Activated Th1 cells and Th17 cells are thought to be the main
culprit in EAE and MS. Th1 are IFN-g producing, and Th17 are IL-17 producing T lymphocytes. They are primed outside the CNS by dendritic cells,
then cross the blood–brain barrier and encounter CNS antigen-presenting cells. They produce inflammatory products and cytokines that damage
the myelin and axons. They also activate the resident microglia and produce factors that attract further inflammatory cells to the CNS and
perpetuate the inflammatory cascade. Antibodies and B cells can also enter the CNS, and plasma cells produce antibodies within the CNS.
Antibody mediated damage contributes to the inflammatory demyelination and neurodegeneration.
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rather than two compartments are considered critical to EAE
and MS pathogenesis (t Hart et al., 2009). The hypothesis was
derived from work in a non-human primate model of MS (Kap
et al., 2010a). In this model, autoreactive T cells are actively
induced by peripheral immunization (occurring in lymph
nodes and spleen, ‘afferent compartment’) with antigen emul-
sified in an adjuvant (in EAE) or by infection with an as yet
unidentified pathogen (in MS). Such T cells collect in the
spleen (Flugel et al., 2001) before migrating to the ‘target
compartment’ (the CNS), where they recognize their cognate
antigen on local APCs, are activated and start an inflammatory
cascade leading to tissue injury. Tissue debris that are cleared
from the CNS are then found in APCs within a third, ‘CNS
draining compartment’, comprising the cervical and lumbar
lymph nodes and the spleen (t Hart et al., 2009). Draining is
thought to occur by means of interstitial fluids and/or the
cerebrospinal fluid. T-cell responses are then triggered in the
lymph nodes of the third compartment leading to the genera-
tion of new autoreactive T-cell specificities. Such cells are then
released into the afferent compartment, where they can either
mitigate or exacerbate the ongoing autoimmune reaction (t
Hart et al., 2008; 2009). Similar observations were reported in
a transgenic mouse model of EAE (Furtado et al., 2008). Data
show that APCs in the cervical lymph nodes that contain
myelin breakdown products have an anti-inflammatory phe-
notype, whereas APCs containing neuronal antigen such as
the light chain of neurofilament appear to have a pro-
inflammatory phenotype. The anti-inflammatory nature of
myelin-containing APCs is consistent with data showing a
generally anti-inflammatory activity of myelin-fed macroph-
ages. Both in EAE and in MS, increased numbers of profes-
sional APC-containing neuroantigens are seen in the CNS-
draining lymphoid organs.

The three-compartment model of EAE pathogenesis can
be extrapolated to MS immunopathogenesis. However, a spe-
cific peripheral trigger of autoreactive T cells in MS has been
elusive. Thus, in accordance with the primary lesion hypoth-
esis (Wilkin’s hypothesis) (Wilkin, 1990), the attractive
mechanism has been proposed whereby initial activation of
encephalitogenic T cells in MS does not occur in the afferent
compartment, such as in the EAE model, but in the draining
compartment.

A further refinement of the primate model is the recent
development of a marmoset model in which EAE can be
induced by incomplete, rather than complete Freund’s adju-
vant (i.e. without Mycobacterium tuberculosis, a powerful
inducer of pro-inflammatory cytokines) (Kap et al., 2008).
Although the use of incomplete Freund’s adjuvant still
involves external immunization, it more accurately reflects
the human immune response. We discuss EAE in primates
and its role in MS treatment development below.

EAE induction

EAE is primarily used as an animal model of autoimmune
inflammatory diseases of the CNS, and it resembles MS, the
prototypical such disease, in many respects (Gold et al., 2006;
Steinman and Zamvil, 2005; 2006; Farooqi et al., 2010). Some
models are more similar to other, less common inflammatory
CNS disorders, such as the monophasic acute disseminated

encephalomyelitis (ADEM) or neuromyelitis optica (NMO,
Devic’s disease) (Furlan et al., 2009). Increasingly, the use of
EAE has expanded considerably beyond the laboratory study
of MS and the development of MS therapeutics. EAE has also
become a very well characterized model for organ-specific
autoimmune disease in general. Indeed, several recent first
reports of key novel functions of immunologically important
molecules, or of a novel knockout mouse were published with
EAE data as the in vivo validation model. Examples include
the discovery of ROR-g (RORC) as a master transcription
factor for Th17 cell development (Ivanov et al., 2006), the
identification of the aryl hydrocarbon receptor (AHR) as an
essential component in the development of both Treg and
Th17 responses (Veldhoen et al., 2008) and the differential
role of the related molecules IL-12 and IL-23 in the suscepti-
bility to autoimmune demyelination (Becher et al., 2002;
Gran et al., 2002; Cua et al., 2003).

EAE was first described over 75 years ago (Rivers et al.,
1933; Rivers and Schwentker, 1935) and is still a popular
and widely used model. A PubMed search [‘(experimental)
autoimmune encephalomyelitis/encephalitis OR EAE OR
experimental allergic encephalomyelitis/encephalitis’] identi-
fies over 9000 citations, of which almost 6000 since 1990.
Like all animal models, EAE has limitations when applied to
human disease (Sriram and Steiner, 2005;Gold et al., 2006;
Steinman and Zamvil, 2006; Furlan et al., 2009; Farooqi et al.,
2010); it is very heterogeneous in terms of induction
methods, clinical and pathological features, and amenability
to treatment, all of which add to its complexity. Therefore,
its usefulness is critically dependent on using appropriate
models to answer the specific scientific or clinical questions
that are being addressed. If, for example, the pathogenesis of
spontaneous recurrence of inflammation is studied, a relaps-
ing rather than a monophasic EAE model should be used
(Baker et al., 1991; Miller et al., 2007b).

Table 2 shows a list of potential uses of EAE to explore,
develop and test general neuroscience and immunology con-
cepts, developing general therapeutic strategies, and the
potential uses of EAE to answer question specifically related
to inflammatory demyelination and its consequences.

In terms of providing clues to the MS pathogenesis and
allowing development of treatments, a most exciting and
rewarding approach was that of the bidirectional translational
studies pioneered by the group of L Steinman (Lock et al.,
2002; Robinson et al., 2003; Steinman and Zamvil, 2003;
Kanter et al., 2006; Han et al., 2008). This involved gene
expression profiling in MS brain, identification of a number of
plausible novel targets and then testing and validating these
targets in EAE. Several such targets have been identified in this
fashion, some supported by small previous studies in EAE, and
these targets have a potential for being translated into MS
treatment soon. Such targets include osteopontin, platelet-
activating factor receptor, histamine receptors and alpha-B
crystallin (Lock et al., 2002; Han et al., 2008; Steinman, 2009).

Induction of EAE in different strains of
rodents and monkeys
EAE can be induced in a multitude of species and strains.
Interestingly, humans were the first species where sensitiza-
tion with nervous tissue led to an inflammatory demyelinat-
ing CNS disease. This occurred as a rare complication of rabies
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vaccination with virus grown on rabbit spinal cord (Sabin
and Wright, 1934). It was subsequently shown that the re-
sultant encephalomyelitis was not due to rabies, but to an
autoimmune response triggered by the spinal cord contami-
nant of the vaccine. Rivers in 1933 developed EAE in an
attempt to understand better the pathogenesis of this post-
vaccinal encephalomyelitis (Zinsser and Tang, 1926; Rivers
and Stewart, 1928; no authors listed, 1931; Rivers et al., 1933;
Rivers and Schwentker, 1935).

Since then, EAE has been induced in a variety of rodents
and monkeys, providing models of acute monophasic,
relapsing–remitting and chronic progressive CNS inflamma-
tion. Optic neuritis, often a first sign of autoimmune
demyelination, has also been modelled (Rao et al., 1977;
Raine et al., 1980; Mendel et al., 1995; Kornek et al., 2000;
Pomeroy et al., 2005; Gold et al., 2006)

‘Active’ EAE is induced by immunization with CNS tissue
or myelin peptides, such as myelin basic protein (MBP) and
proteolipid protein (PLP) in CFA, with high incidence of
disease induced in susceptible animal strains (Stromnes and
Goverman, 2006a). Disease onset typically occurs after 9–12
days and is followed by variable clinical and pathological
outcomes as mentioned above. For example, acute self-
limiting or chronic relapsing–remitting disease/ progressive
disease can be induced in guinea pigs by immunization with
MBP or with CNS tissue homogenate respectively (Raine et al.,
1977; Alvord et al., 1985). By contrast, ‘passive’ or adoptive–
transfer EAE (AT-EAE) can be induced in recipient animals by
transferring pathogenic, myelin-specific CD4 T cells gener-
ated in donor animals by active immunisation (Stromnes and
Goverman, 2006b). The latter type of EAE was instrumental in
establishing the key role of myelin-reactive T cells in disease
pathogenesis (Pettinelli and McFarlin, 1981). AT-EAE has
enabled researchers to focus on variables associated with the
‘effector phase’ of disease and to ‘bypass’ its induction phase.
Encephalitogenic T cells can also be manipulated in vitro to

characterize the role of specific cytokines and other biological
agents before adoptive transfer into recipients. These cells can
be conveniently labelled to follow their localization, survival
and interactions with other cell types in the recipient host. In
addition, adoptive transfer of cells has made it possible to
address the role of a variety of inflammatory molecules in
different aspects of disease development and regulation
through the use of gene-targeted donor or recipient animal
strains (most frequently, C57BL/6 mice).

The pathology of lesions varies in different animal strains
(Gran et al., 2007; Lassmann, 2007). For example, in the
C57BL/6 mouse, immunization with MOG35–55 in CFA can
induce monophasic or a chronic, sustained form of EAE. The
former is characterized by multifocal, confluent areas of
mononuclear inflammatory infiltration and demyelination
in the peripheral white matter of the spinal cord (Day, 2005).
Macrophages and CD4+ T cells are the main cell types in the
inflammatory infiltrate. In the brain, there is meningitis and
perivascular inflammatory cuffing in the cerebellum and
hindbrain white matter. The latter type of EAE, often induced
with a ‘booster’ injection of the same myelin peptide 7 days
after the initial immunisation (or with higher doses of
peptide at the first immunization), shows similar pathology
with reduced tendency to resolution of inflammation and
demyelination after the peak of disease. These characteristics
make this disease type a good model of chronic inflammatory
demyelination, which approximates SPMS more closely (Ban-
nerman et al., 2005).

Another frequently used EAE model is induced in SJL/J
mice by immunization with PLP139–151, leading to
relapsing–remitting disease in which T-cell reactivity spreads
to new myelin peptide determinants with each relapse
(epitope spreading) (McRae et al., 1995; Vanderlugt et al.,
2000). Typical lesions appear in the optic nerve, brainstem,
spinal cord, cerebellum and cerebral cortex, initially with
perivascular and meningeal lymphocyte and neutrophil infil-

Table 2
Uses of EAE

General Neuroprotective strategies
Immunosuppressive drugs
Neurotransmitters in inflammation
Channel function during inflammation, demyelination and remyelination
Immune responses in immunologically privileged sites
Effects of cytokines in the CNS
Blood–brain barrier function and dysfunction
Immunological tolerance
T-cell receptor restriction
Epitope spreading
Regulatory T cells

Specific to CNS
inflammation,
demyelination

Development, testing and validation of MS drugs: bioavailability, pharmacokinetics, preclinical efficacy, safety
Development and testing of drugs with possible dual action on the CNS and immune system, for development of

drugs with both immunomodulatory and neuroprotective properties
Gene expression during demyelination a remyelination
Gene expression profiling for discovery and validation of new targets for MS treatment
Expression of genes associated with sparing of CNS elements or resolution of inflammation
Mechanisms of axonal damage and loss
Study of symptoms and symptomatic treatment for MS: e.g. spasticity and anti-spastic drugs, bladder dysfunction, pain
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tration, followed by resolution of the inflammatory infiltrate
and at the same time progression of white matter damage and
gliosis, demyelinated axons and myelin debris-containing
macrophages. In the Lewis rat, active and passive EAE
induced by MBP or transfer of MBP-specific T cells typically
produces severe CNS inflammation, with little or no demy-
elination (Meeson et al., 1994). Thus, the model is useful for
the study of acute CNS inflammation. Interestingly, injection
with antibodies to surface myelin antigens such as MOG
leads to the appearance of demyelination and increased
perivascular inflammation and clinical symptoms, usually
followed by remyelination. In the Dark Agouti (DA) rat,
syngeneic spinal cord tissue or recombinant rat MOG can be
used to induce EAE characterized by demyelination and
spinal cord lesions with perivascular and subpial inflamma-
tory infiltration (Tanuma et al., 2000). Demyelination tends
to appear in the dorsal column of the spinal cord only during
the second disease relapse. Whereas both TCRab-positive T
cells and ED-1-positive macrophages are observed in the
acute phase, in the chronic/relapsing phases, there is a pre-
dominance of macrophages over T cells (Tanuma et al., 2000).

Therapies in EAE

Immunologically (Table 3) or neurobiologically (Table 4)
based interventions in EAE have allowed the exploration of
pathogenesis pathways and the development of validation of
certain targets for MS therapies.

Of note, some of the neuroimmune molecules listed
above may have dual action, immunomodulatory and neu-
roprotective, and may be attractive candidates as therapeutic
targets in MS. A few of the above have made their way into
early clinical trials. These include cannabinoids, neuropep-
tides and ion channels, which are present and subject to
modulation also in the immune system, and some neu-
rotransmitters such as dopamine (Rog et al., 2005; Nessler
et al., 2006; Vollmar et al., 2009). This dual expression in the
immune and nervous system not only certainly provides the
opportunity for multiple therapeutic mechanisms but also
invites caution: the favourable effects in one system should
not be counteracted by detrimental effects in the other.

Correlation between EAE and
MS studies

As can be already observed from the above tables, a large
number of EAE studies are corroborated by results in MS.
Since the immune system and the immune mechanisms in
EAE are very complex, some treatments that have been suc-
cessful in EAE are yet to be assessed in MS.

In EAE, and to some extent in MS, unsuccessful studies
may not be published, leading to publication bias. While this
can be assessed when there are a substantial number of
studies with the same or very similar compound, by plotting
the standard error /deviation against the effect size (funnel
plot), this is not feasible for a few small exploratory studies as
are often done in EAE. However, for some of the studies
discussed below, where such analysis is possible, there is no
evidence of major (publication) bias (Farooqi et al., 2010).

EAE studies may differ widely in terms of the experimen-
tal conditions. This includes the species, strain, and sex of the
animals used; the age; specific induction method (including
the neuroantigen, the type of adjuvant used, the active
induction vs. AT EAE model); and the timing, frequency and
dose of the therapeutic agent under study (Gold et al., 2006).
Most rodent EAE experiments are done in genetically identi-
cal groups of animals. This at least eliminates an important
source of variation (although this variation does exist in
humans). However, genetically identical animals may differ
in their susceptibility to EAE depending on environmental
factors, which may not easily be controlled. For example, the
degree of colonization of the gut and the type of commensal
flora can determine to a great degree the susceptibility to EAE
(Yokote et al., 2008).

Many of the above-discussed caveats may explain discrep-
ancies between EAE studies.

Notwithstanding sources of variation, there are many
examples of successful therapies in EAE that have also proven
successful in MS.

Based on the congruence between the evidence in EAE
and MS, studies of candidate DMT can be divided into several
categories:

EAE and MS treatment success
The most convincing correlations between EAE and MS thera-
peutic success are, reassuringly, those of the currently
licensed and used DMT: IFN-beta (Abreu, 1982; Paty and Li,
1993), GA (Teitelbaum et al., 1971; Johnson et al., 1995) and
the anti-VLA-4 antibody (Yednock et al., 1992; Polman et al.,
2006). Their use in MS is discussed above. We have recently
conducted a systematic review of all EAE studies looking at
type 1 IFN, GA and anti-VLA-4 (natalizumab) (Farooqi et al.,
2010). The reader is referred to that review for more detail.
The evidence and the role of EAE in the drug development
and testing is discussed below.

IFN-beta. This is a good example of bidirectional dialogue
between MS and EAE. The IFN evidence has developed almost
in parallel, findings from the experimental model feeding
into MS study and vice versa. In 1982, in EAE, Abreu found
that IFN type 1 suppressed disease (Abreu, 1982), while Jacobs
found that intrathecal IFN-beta was effective in 5 of 10 MS
patients (Jacobs et al., 1982).

A total of 25 therapeutic trials in EAE with IFN type 1
(both alpha and beta, as both have been used successfully in
MS) have been identified during our systematic review Meta-
analysis showed that the overall effect was beneficial, though
in some studies, the results were equivocal and in a small
number of studies there was an actual worsening (Farooqi
et al., 2010). Of note, many of the more recent studies were
done with the purpose of exploring further the immuno-
modulatory effects of IFN-beta and elucidating mechanisms
of action rather than confirming its clinical effects.

GA. The story of GA is tightly linked to EAE. As discussed
above, GA a random copolymer of tyrosine, glutamate,
alanine and lysine in ratios resembling myelin basic protein.
It was developed in 1971 by Teitelbaum and colleagues in the
laboratory of M. Sela, who was conducting extensive studies

BJP CS Constantinescu et al.

1086 British Journal of Pharmacology (2011) 164 1079–1106



Ta
b

le
3

Im
m

un
ol

og
ic

al
ly

ba
se

d
th

er
ap

ie
s

in
EA

E

G
en

er
al

ap
p

ro
ac

h
cl

as
s

Tr
ea

tm
en

t
ty

p
e

Ex
am

p
le

s
(E

A
E)

U
se

d
/t

ri
ed

in
M

S
(c

o
m

m
en

ts
)

R
ef

er
en

ce

Ph
ar

m
ac

ol
og

ic
al

(t
ra

di
tio

na
l

p
ha

rm
ac

eu
tic

al
ag

en
ts

)
G

en
er

al
im

m
un

os
up

p
re

ss
iv

e
M

ito
xa

nt
ro

ne
Ye

s
(li

ce
nc

ed
)

(R
id

ge
et

al
.,

19
85

;
Le

vi
ne

an
d

Sa
ltz

m
an

,
19

86
;

Lu
bl

in
et

al
.,

19
87

;
Ti

sc
hn

er
an

d
Re

ic
ha

rd
t,

20
07

;
M

an
ga

no
et

al
.,

20
10

;)
C

yc
lo

p
ho

sp
ha

m
id

e
Ye

s
G

lu
co

co
rt

ic
oi

ds
Ye

s
Im

m
un

om
od

ul
at

or
y

dr
ug

s
IF

N
-b

et
a

Ye
s

(li
ce

ns
ed

,
w

id
el

y
us

ed
)

(A
br

eu
,

19
82

;
Ja

co
bs

et
al

.,
19

82
;

H
er

tz
an

d
D

eg
he

ng
hi

,
19

85
;

A
br

eu
et

al
.,

19
86

;
Pa

ty
an

d
Li

,
19

93
;

Br
od

an
d

Bu
rn

s,
19

94
;

Ru
ul

s
et

al
.,

19
96

;
Yu

et
al

.,
19

96
;

C
ro

xf
or

d
et

al
.,

19
98

b;
va

n
de

r
M

ei
de

et
al

.,
19

98
;

Lu
ca

et
al

.,
19

99
;

Ya
su

da
et

al
.,

19
99

;
W

en
de

r
et

al
.,

20
01

;
Sc

ha
ef

er
et

al
.,

20
06

;
Ja

in
ie

t
al

.,
20

06
;

M
ar

tin
-S

aa
ve

dr
a

et
al

.,
20

07
)

O
th

er
dr

ug
s

C
ap

to
p

ril
,

lo
sa

rt
an

,
p

en
to

xy
p

hy
lin

e,
p

ra
zo

si
n,

an
tih

is
ta

m
in

es
,

an
d

ot
he

rs

N
o

(n
ot

as
D

M
T)

(B
ab

in
gt

on
an

d
W

ed
ek

in
g,

19
71

;
Br

os
na

n
et

al
.,

19
85

;
C

la
ud

io
an

d
Br

os
na

n,
19

92
;

N
at

af
et

al
.,

19
93

;
C

on
st

an
tin

es
cu

et
al

.,
19

95
;

D
im

itr
ia

do
u

et
al

.,
20

00
;

St
eg

ba
ue

r
et

al
.,

20
09

;
Ja

di
di

-N
ia

ra
gh

an
d

M
irs

ha
fie

y,
20

10
)

Im
m

un
e

de
vi

at
io

n
C

yt
ok

in
es

in
du

ci
ng

Th
1-

Th
2

sh
ift

IL
-4

N
o

(R
ac

ke
et

al
.,

19
94

;
Yo

un
g

et
al

.,
20

00
)

Im
m

un
e

de
co

y/
an

tig
en

m
im

ic
ry

;
in

te
rf

er
en

ce
w

ith
an

tig
en

p
re

se
nt

at
io

n

G
la

tir
am

er
ac

et
at

e
Ye

s
(li

ce
ns

ed
,

w
id

el
y

us
ed

(T
ei

te
lb

au
m

et
al

.,
19

71
;

19
73

;
19

74
;

19
96

;
19

99
;

20
04

;
Ke

ith
et

al
.,

19
79

;
Li

sa
k

et
al

.,
19

83
;

A
ha

ro
ni

et
al

.,
19

93
;

19
97

;
19

98
;

Jo
hn

so
n

et
al

.,
19

95
;

19
98

;
G

ra
n

et
al

.,
20

00
;

G
ilg

un
-S

he
rk

ie
t

al
.,

20
03

;
Ill

es
et

al
.,

20
04

;
St

er
n

et
al

.,
20

04
;

G
iu

lia
ni

et
al

.,
20

05
a,

b;
Je

e
et

al
.,

20
07

;
Be

gu
m

-H
aq

ue
et

al
.,

20
08

;
St

er
n

et
al

.,
20

08
;

Ka
la

et
al

.,
20

10
)

A
lte

re
d

p
ep

tid
e

lig
an

ds
M

BP
N

o
(t

ria
lu

ns
uc

ce
ss

fu
l;

so
m

e
A

PL
in

du
ce

d
an

im
m

un
e

re
sp

on
se

w
ith

ex
ac

er
ba

tio
n

of
th

e
di

se
as

e
an

d/
or

an
ap

hy
la

ct
oi

d
re

ac
tio

n)
O

ng
oi

ng
tr

ia
lu

si
ng

ow
er

do
se

s

(B
ro

ck
e

et
al

.,
19

96
;

Bi
el

ek
ov

a
et

al
.,

20
00

;
Ka

p
p

os
et

al
.,

20
00

)

In
du

ct
io

n
of

im
m

un
ol

og
ic

al
to

le
ra

nc
e

i.v
.,

p
.o

.
ad

m
in

is
tr

at
io

n
of

an
tig

en
O

ra
lt

ol
er

an
ce

to
M

BP
,

i.v
.

to
le

ra
nc

e
to

M
BP

N
o

(t
ria

lo
f

or
al

m
ye

lin
sh

ow
ed

in
te

re
st

in
g

im
m

un
e

ef
fe

ct
s

bu
t

la
rg

el
y

un
su

cc
es

sf
ul

)
(W

ei
ne

r
et

al
.,

19
93

;
C

he
n

et
al

.,
19

94
;

W
hi

ta
cr

e
et

al
.,

19
96

)

Bl
oc

ka
de

of
se

co
nd

si
gn

al
C

TL
A

4-
Ig

;
no

n-
de

p
le

tin
g

an
tiC

D
3

N
o

(t
ria

ls
un

su
cc

es
sf

ul
or

in
co

nc
lu

si
ve

)
(C

ro
xf

or
d

et
al

.,
19

98
a;

Tr
an

et
al

.,
20

01
)

D
N

A
th

er
ap

y
cD

N
A

‘v
ac

ci
na

tio
n’

e.
g.

M
BP

,
PL

P
Ye

s
(p

ro
m

is
in

g)
(W

ai
sm

an
et

al
.,

19
96

;
Lo

be
ll

et
al

.,
19

98
;

Se
lm

aj
et

al
.,

20
00

)
Pa

th
og

en
ic

(e
.g

.
Th

1,
Th

17
)

cy
to

ki
ne

or
cy

to
ki

ne
de

ve
lo

p
m

en
ta

lp
at

hw
ay

bl
oc

ka
de

A
nt

i-c
yt

ok
in

e
m

on
oc

lo
na

l
an

tib
od

ie
s

C
yo

ki
ne

re
ce

p
to

r
an

ta
go

ni
st

s

A
nt

i-I
L-

12
/I

L-
23

p
40

,
IL

-1
RA

,
le

ne
rc

ep
t

N
o

(w
or

se
ni

ng
w

ith
le

ne
rc

ep
t,

no
ef

fe
ct

w
ith

th
e

ot
he

rs
(C

on
st

an
tin

es
cu

et
al

.,
19

98
;

C
he

n
et

al
.,

20
06

;
Fu

rla
n

et
al

.,
20

07
;

M
ar

tin
an

d
N

ea
r,

19
95

)

Ta
rg

et
in

g/
de

p
le

tin
g

im
m

un
e

ce
lls

ot
he

r
th

an
T

ce
lls

M
ac

ro
p

ha
ge

/m
ic

ro
gl

ia
de

p
le

tio
n

C
hl

od
ro

na
te

N
o

(H
ui

tin
ga

et
al

.,
19

90
;

Ju
ng

et
al

.,
19

93
;

Tr
an

et
al

.,
19

98
)

B
ce

ll
de

p
le

tio
n/

bl
oc

ka
de

A
nt

iC
D

20
/C

D
19

an
tib

od
ie

s
Ye

s
(p

ro
m

is
in

g)
(H

au
se

r
et

al
.,

20
08

;
M

at
su

sh
ita

et
al

.,
20

08
;

Ka
p

et
al

.,
20

10
b)

M
as

t
ce

ll
Lu

te
ol

in
N

o
(T

he
oh

ar
id

es
,

20
09

)
En

ha
nc

in
g

en
do

ge
no

us
im

m
un

e
re

gu
la

to
ry

m
ec

ha
ni

sm
s

U
p

-r
eg

ul
at

io
n

of
Tr

eg
ce

lls
Re

tin
oi

c
ac

id
Ye

s
(s

m
al

ls
tu

dy
p

lu
s

IF
N

)
(M

as
sa

ce
si

et
al

.,
19

91
;

Ve
rg

el
li

et
al

.,
19

97
;

Q
u

et
al

.,
19

98
)

(S
ew

el
le

t
al

.,
20

02
;

Se
w

el
le

t
al

.,
20

03
;

C
or

re
al

e
an

d
Fa

re
z,

20
09

)
G

ut
p

ar
as

ite
s

Ph
as

e
I

tr
ia

ls
on

go
in

g;
La

rg
er

tr
ia

ls
p

en
di

ng
En

ha
nc

em
en

t
of

en
do

ge
no

us
ty

p
e

1
IF

N
TL

R
lig

an
ds

Ye
s

(p
ol

yI
:C

)
(B

ev
er

et
al

.,
19

91
)

(T
ou

il
et

al
.,

20
06

;
O

’B
rie

n
et

al
.,

20
10

)
C

el
l-b

as
ed

th
er

ap
ie

s
Tr

an
sf

er
of

Tr
eg

Tr
an

sf
er

of
C

D
4+

C
D

25
+

Tr
eg

ce
lls

N
o

(S
te

p
he

ns
et

al
.,

20
09

)
H

ae
m

at
op

oi
et

ic
st

em
ce

ll
tr

ea
tm

en
t

Im
m

un
os

up
p

re
ss

io
n

an
d

im
m

un
e

sy
st

em
re

ne
w

al
Ye

s
(K

ar
us

si
s

et
al

.,
19

92
;

19
93

;
19

99
;

Bu
rt

et
al

.,
19

98
;

va
n

Be
kk

um
,

20
00

;
Bu

rt
et

al
.,

20
09

;
M

ur
ar

o
an

d
U

cc
el

li,
20

10
;

Pa
sq

ui
ni

et
al

.,
20

10
)

C
el

lt
ra

ffi
ck

in
g/

ba
se

d
ap

p
ro

ac
he

s
Ta

rg
et

in
g

ad
he

si
on

m
ol

ec
ul

es
re

q
ui

re
d

fo
r

cr
os

si
ng

th
e

BB
B

VL
A

4
an

tib
od

y
Ye

s
(li

ce
nc

ed
)

(Y
ed

no
ck

et
al

.,
19

92
;

Ke
nt

et
al

.,
19

95
;

Le
ge

r
et

al
.,

19
97

;
So

ilu
-H

an
ni

ne
n

et
al

.,
19

97
;

Br
oc

ke
et

al
.,

19
99

;
Sh

er
em

at
a

et
al

.,
19

99
;

Th
ei

en
et

al
.,

20
01

;
20

03
;

Pi
ra

in
o

et
al

.,
20

02
;

va
n

de
r

La
an

et
al

.,
20

02
;

C
an

ne
lla

et
al

.,
20

03
;

Le
on

e
et

al
.,

20
03

;
M

ill
er

et
al

.,
20

03
;

O
’C

on
no

r
et

al
.,

20
04

;
20

05
;

M
ye

rs
et

al
.,

20
05

;
Po

lm
an

et
al

.,
20

06
;

M
ill

er
et

al
.,

20
07

a;
H

av
rd

ov
a

et
al

.,
20

09
)

Ta
rg

et
in

g
ly

m
p

ho
cy

te
eg

re
ss

fr
om

th
e

ly
m

p
ho

id
or

ga
ns

Fi
ng

ol
im

od
Ye

s
(li

ce
nc

e
aw

ai
te

d
so

on
)

(F
uj

in
o

et
al

.,
20

03
;

Ra
us

ch
et

al
.,

20
04

;
W

eb
b

et
al

.,
20

04
;

Ka
ta

ok
a

et
al

.,
20

05
;

Ba
la

to
ni

et
al

.,
20

07
;

Fo
st

er
et

al
.,

20
07

;
Fo

st
er

et
al

.,
20

09
;

C
hi

ba
et

al
.,

20
11

;
C

oh
en

et
al

.,
20

10
;

Ka
p

p
os

et
al

.,
20

10
;

Pa
p

ad
op

ou
lo

s
et

al
.,

20
10

)
Tr

an
sg

en
ic

m
ic

e
C

yt
ok

in
e,

ch
em

ok
in

es
,

ce
ll

su
rf

ac
e

m
ol

ec
ul

e
kn

oc
ko

ut
s;

tr
an

sg
en

ic
m

ic
e

ov
er

ex
p

re
ss

in
g

im
m

un
e

m
ol

ec
ul

es
in

C
N

S

N
um

er
ou

s
N

/A
bu

t
so

m
e

ha
ve

le
d

to
ta

rg
et

in
g

im
m

un
e

m
ol

ec
ul

es
ba

se
d

on
th

e
re

su
lts

(G
la

bi
ns

ki
et

al
.,

19
99

;
H

ill
ia

rd
et

al
.,

19
99

;
Iz

ik
so

n
et

al
.,

20
00

;
Fu

rla
n

et
al

.,
20

01
;

H
ua

ng
et

al
.,

20
01

;
C

ua
et

al
.,

20
03

;
Pa

rk
et

al
.,

20
04

;
El

ho
fy

et
al

.,
20

05
;

A
xt

el
le

t
al

.,
20

06
;

La
ou

ar
et

al
.,

20
08

;
Ya

ng
et

al
.,

20
09

)

BJPEAE as model for MS

British Journal of Pharmacology (2011) 164 1079–1106 1087



of the immunogenicity of proteins. GA was developed ini-
tially as a putative encephalitogen; however, it showed the
opposite action in that it effectively blocked EAE (Teitelbaum
et al., 1971; 1973; 1974).

Extensive subsequent studies were aimed mostly at eluci-
dating mechanisms of actions of this versatile drug, but also
at optimizing its pharmacology. Both pre- and post-licensing
studies with GA in EAE have been successful. Our recent
systematic review did not appear to detect a suggestion of
publication bias (Farooqi et al., 2010).

GA is a versatile compound. Although its mechanism of
action is incompletely elucidated, it is likely to be multifac-
torial. The understanding of GA has paralleled the advances
in our understanding of fundamental immunological prin-
ciples and has thus evolved. From an immune decoy mecha-

nism, through interference with antigen presentation,
cytokine shift, induction of immunological tolerance, induc-
tion of immunoregulatory mechanisms (in the form the T
suppressor cells to the Treg cells of today), antioxidant effects,
to the more recent attention to its suppressive effects on Th17
development and effector function, and even to even more
speculative attribution of neuroprotective and remyelinative
properties, there is some evidence for a potential role of GA in
all of these therapeutic mechanisms (Arnon and Aharoni,
2009). Most of these have come from studies in EAE and/or
related demyelinating disease models.

Altered peptide ligands. Altered peptide ligands (APL) of MBP
were initially developed to treat EAE based on the concept that
substitution of one or more amino acids to change MHC or

Table 4
Neurobiologically/neuropharmacologically based therapies in EAE

General approach
class Treatment type Effects in EAE References

Ion channel-based
approaches

Na channel blockers (e.g. lamotrigine,
flecainide), Na channel knockout mice

Improvement (Bechtold et al., 2004; 2006; Black et al., 2006;
O’Malley et al., 2009)

K Channel blockade Improvement (Judge et al., 1997; Strauss et al., 2000; Beeton
et al., 2001; Madsen et al., 2005; Reich et al.,
2005)

Ca channel blockade Improvement (Brand-Schieber and Werner, 2004; Tokuhara
et al., 2010)

ASIC channel blockers (e.g. amiloride),
ASIC knockouts

Improvement (Friese et al., 2007)

Neurotransmitter-based
approaches

Dopamine signalling, increase in
dopamine levels

Improvement (Dijkstra et al., 1994)

Dopamine depletion (e.g. MPTP) Worsening (Balkowiec-Iskra et al., 2007)

Noradrenaline increase Improvement (Simonini et al., 2010)

Serotonin increase Improvement (Weistock et al., 1977; Scott et al., 1982; Vollmar
et al., 2009)

Glutamate receptor antagonism Improvement (Wallstrom et al., 1996; Paul and Bolton, 2002;
Gilgun-Sherki et al., 2003)

Neuropeptides Substance P antagonism,
Substance P receptor (NK1)
knockout mice

Improvement (Nessler et al., 2006; Reinke et al., 2006)

Neuropeptide Y Improvement (Bedoui et al., 2003; Luhder et al., 2009)

Cannabinoids CB1 and CB2 receptor agonism Improvement (Arevalo-Martin et al., 2003; Pryce et al., 2003;
Zajicek et al., 2003; Ni et al., 2004; Maresz
et al., 2005; Rog et al., 2005; Freeman et al.,
2006; Wissel et al., 2006; Centonze et al.,
2007; Collin et al., 2007; Palazuelos et al.,
2008; Zhang et al., 2009)

Cell-based therapies Neural stem cells Improvement (Picard-Riera et al., 2002; Einstein et al., 2003;
Pluchino et al., 2003; 2005; Einstein et al.,
2006; Makar et al., 2008; Pluchino et al., 2009;
Yang et al., 2009)

Mesenchymal stem cells Improvement (Zappia et al., 2005; Kassis et al., 2008; Schafer
et al., 2008; Bai et al., 2009; Lanza et al., 2009;
Lu et al., 2009; Rafei et al., 2009; Freedman
et al., 2010; Gordon et al., 2010; Karussis et al.,
2010; Yamout et al., 2010)
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T-cell receptor (TCR) binding characteristics would induce
tolerance to the native peptide through mechanisms includ-
ing T-cell antagonism and partial agonism as well as cytokine
deviation (Evavold and Allen, 1991; Racioppi et al., 1993) and
antagonism at the T-cell activation level (De Magistris et al.,
1992). Brocke et al. induced EAE with a MBP87-99-specific
T-cell clone and were able to induce tolerance in vivo by
treating mice with an analogue of the native peptide (alanine
substitution of the phenylalanine at residue 96). Paralysis was
reversed, inflammatory infiltrates were regressed and brain
T-cell infiltrates were depleted. Interestingly, it was also found
that the simple administration of the native MBP peptide was
equally effective, indicating that a ‘tolerizing’ injection before
the ‘immunizing’ one was sufficient to prevent disease (Brocke
et al., 1996). The approach was then tested in MS in a small
phase II placebo-controlled trial, which had to be suspended
because of hypersensitivity reactions in 9% of the patients.
Secondary analysis of patients who completed the study
showed a reduction of the volume and number of contrast-
enhancing lesions in the treatment group. A regulatory Th2
response to the APL was also observed, which cross-reacted
with the native peptide (Kappos et al., 2000). Major concerns,
however, were raised by a parallel study by Bielekova et al. who
clearly documented that APL could exacerbate MS. In a phase
II clinical trial, they found that three patients developed
exacerbations after administration of a MBP APL. In two
patients, increased disease activity was shown to be linked to
the APL immunologically and radiologically. Patients recov-
ered well, and the therapeutic disappointment was at least
partly compensated for by the scientific insight into the ability
of modified MBP peptides to induce exacerbations in patients,
thus confirming a long suspected link between autoimmunity
to MBP and MS (Bielekova et al., 2000).

Adhesion molecule blockade. A solid body of evidence impli-
cated VLA-4 (alpha4 beta 1 integrin) as an essential molecule
in EAE, important for lymphocyte entry into the brain paren-
chyma. Steinman and Yednock showed that an antibody to
VLA-4 suppressed EAE (Yednock et al., 1992). This eventually
led to the development and production of the monoclonal
antibody natalizumab (Tysabri®). Our recent meta-analysis of
19 EAE studies of VLA-4 antibodies or blockers that use clini-
cal score as an outcome measure identified an overall benefi-
cial effect (Farooqi et al., 2010). Interestingly, however, two
studies (Theien et al., 2001; 2003) demonstrated a significant
exacerbation of disease with anti-VLA-4 agents and advised
caution in translation to MS. Of note, these two studies
showed a discordant effect depending on the timing of
administration of the agent (when administered either before
EAE induction or at peak disease it induced an exacerbation),
and one employed a small molecule VLA-4 antagonist. It is of
interest that preliminary human studies with small molecule
antagonists of integrins including VLA4 seem to be less effec-
tive than antibody blockade studies.

Clinical licence for Tysabri in MS was obtained in 2004
after remarkable success in phase II and III clinical trials
(Miller et al., 2003; O’Connor et al., 2004). However, the drug
was withdrawn soon thereafter following its rare association
with progressive multifocal leukoencephalopathy (PML), an
opportunistic infection due to the reactivation of latent John
Cunningham virus (JCV) (Kleinschmidt-DeMasters and Tyler,

2005). The drug was cautiously re-introduced in 2006 after
safety review, under a special prescription and observation
programme, as the clinical benefits in people with aggressive
RRMS are judged to outweigh the risks (Polman et al., 2006;
Goodin et al., 2008). Indeed, natalizumab is currently consid-
ered the most potent licenced DMT.

Although natalizumab is another example of general con-
cordance between EAE and MS studies, it does illustrate the
potential risks of extrapolating all aspects of EAE results of a
drug treatment to MS. As JCV only infects humans, side
effects relating to it were not predicted on the basis of EAE
experiments. This underscores the need for tailoring the
appropriate experimental model experiments to the clinical/
scientific question being addressed.

Generally, while hints at immune or neurobiological
effects can often be provided by EAE experiments, alter-
native modelling may well be required for safety and
pharmacokinetic/pharmacodynamic studies.

Other studies in EAE have investigated the inhibition of
other adhesion molecules than VLA-4 and inhibitors other
than monoclonal antibodies. None as yet have been trans-
lated to clinical use.

Other compounds. A substantial number of other studies
have shown treatment success with concordant results in EAE
and MS, using a variety of compounds. Some of these agents,
like the immunosuppressants azathioprine (Hauser et al.,
1983; Massacesi et al., 2005; Casetta et al., 2007; Elkhalifa and
Weiner, 2010), mitoxantrone (Hartung et al., 2002; Weiner,
2004; Martinelli Boneschi et al., 2005) are licenced or well-
established therapies for specific groups of patients with MS.
Others, like laquinimod or fingolimod, have reached late
phase clinical trials or are awaiting licencing decisions (please
see Table 1 for examples). Table 5 lists some approaches with
some degrees of evidence of success in MS with proof of
concept/mechanisms supported by concordant success in
EAE.

Discrepancies between EAE and MS
treatment success
The results outlined above suggest a reassuring degree of
concordance between EAE and MS treatment. Moreover, this
concordance is seen for the majority of the established or
soon-to-be established DMTs for MS. However, there are
many examples of EAE treatment success, which has not
translated into similar MS success. This has been one of the
most consistent criticisms of the EAE model (Sriram and
Steiner, 2005). There are also, of course, a large number of
therapeutic interventions that have shown positive results in
EAE and that, for many reasons, have not yet been tested in
MS. Depending of the strength of evidence from EAE results
and on the practicability of application to human use in early
stage trials, some of these may someday emerge into the field
of MS. Nevertheless, there are many examples in the litera-
ture of treatments that were successful in EAE but not in MS
(see below). Some of these examples are discussed below,
although the list is incomplete. There is a possibility that
negative results in EAE are not published, and thus, the EAE
literature predominantly contains positive results. In MS, the
current trend is to publish both positive and negative large
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studies, industry sponsors having an obligation to do so.
However, small pilot studies, in particular older ones, that
have not yielded conclusive results or that were negative may
still remain unpublished.

Induction of immunological tolerance by oral administra-
tion of antigen has provided very important clues to the
fundamental mechanisms of immune regulation and offered
hopes for the treatment of autoimmune diseases such as MS
and rheumatoid arthritis (Weiner, 2000). Oral tolerance has
been shown to suppress EAE (as well as animal models of
arthritis) (Benson et al., 1999). A pioneering study in which
oral myelin was given to patients with RRMS did not show
efficacy on the clinical primary outcome measures, although
it did show evidence of immune modulation that may, in the
future, be harnessed more successfully to treat MS (Weiner
et al., 1993).

Deoxyspergualin is a xenobiotic with immunosuppressive
properties. In the early 1990s, it was shown to be successful in
several models of EAE (Yamamura et al., 1987; Schorlemmer
and Seiler, 1991). Despite this, when applied to a trial in MS
with clinical MRI follow-up, it failed to show success on the
primary outcome measure (Kappos et al., 1996).

There is ample evidence of alteration of the balance
between the pro- and anti-inflammatory cytokines in MS,
with great potential opportunity for disease modulation.
Indeed, the existing DMTs act, in part, via their cytokine-
modulatory effects. Cytokine therapy, whereby pro-

inflammatory cytokines are blocked by antibodies or their
soluble receptors, has been successful in many models of
autoimmune disease including many EAE studies. It has also
made its way in human disease where it has revolutionized
the treatment of rheumatoid arthritis (RA), for example,
where anti-tumour necrosis factor (TNF) biologicals are now
in well-established use and have made a great impact on the
quality of life and the prevention of late complications in
patients (Feldmann, 2002). The IL-1 receptor antagonist,
anakinra, is also used as a treatment for RA, although not on
such large a scale as TNF blockers (Mertens and Singh, 2009).
TNF and MS are discussed below. Despite evidence for a role
of IL-1 in EAE (Martin and Near, 1995), anakinra was unsuc-
cessful in an MS trial.

A similar approach is to enhance anti-inflammatory
cytokines. Both IL-10 and transforming growth factor (TGF)-
beta were shown to suppress EAE (Santambrogio et al., 1993;
Rott et al., 1994); however, attempts at treating a small
number of MS patients with TGF-beta were unsuccessful due
to side effects (Calabresi et al., 1998).

Another immunological concept to which EAE studies
have brought a major contribution is that of a restricted TCR
use in immune responses (Hafler et al., 1996). This has sig-
nificant implications both for the presumed pathogenesis
and for therapeutic opportunities. As regards the pathogen-
esis, such a restricted receptor use could imply an inciting or
causative infectious agent such as a virus; it could also explain

Table 5
Studies of compounds used with some success in both EAE and MS

Compound/class
EAE proof of concept, mechanistic hint,
confirmation (references) MS therapeutic success (references)

Hormones:

• Estriol
• Testosterone

(Kim et al., 1999)
(Palaszynski et al., 2004)

(Soldan et al., 2003)
(Sicotte et al., 2007)

Statins (Youssef et al., 2002) (Vollmer et al., 2004)

Quinolones

• Linomide
• Laquinimod

(Karussis et al., 1993b)
(Brunmark et al., 2002)

(Comi et al., 2010)

Tolerizing DNA vaccines (Waisman et al., 1996; Lobell et al., 1998;
Selmaj et al., 2000)

(Bar-Or et al., 2007; Garren et al., 2008)

Antibiotics with immunomodulatory
and neuroprotective functions:
minocycline

(Brundula et al., 2002; Giuliani et al., 2005a,b) (Metz et al., 2004; 2009; Zabad et al., 2007;
Zhang et al., 2008)

Immunosuppressants

Azathioprine
Cyclophosphamide
Mitoxantrone

(Blaszczyk et al., 1978)
(Mangano et al., 2010)
(Ridge et al., 1985; Lublin et al., 1987)

Hauser et al., 1983; Hafler et al., 1991;
Noseworthy et al., 1993; van de Wyngaert
et al., 2001; Hartung et al., 2002; Krapf et al.,
2005; Massacesi et al., 2005; Smith et al.,
2005; Casetta et al., 2007

Haematopoietic stem cell
transplantation

(Karussis et al., 1992; Karussis et al., 1993b;
Burt et al., 1995; Burt et al., 1998;
Karussis et al., 1999; van Bekkum, 2000;
Cassiani-Ingoni et al., 2007)

(Muraro et al., 2003; 2005; Burt et al., 2009;
Muraro and Uccelli, 2010; Pasquini et al., 2010)

i.v. immunoglobulins (Achiron et al., 1994; Achiron et al., 2000;
Ephrem et al., 2008)

(Achiron et al., 1998; Haas, 2000;
Strasser-Fuchs et al., 2000; Katz et al., 2006)
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why superantigens (which have predilection for specific
TCRs) can trigger or exacerbate autoimmune disease. The
finding of shared TCR usage across more than one model of
autoimmune disease, for example EAE and its peripheral
nerve counterpart, experimental autoimmune neuritis (EAN),
led to the hypothesis that certain TCRs usage predisposes to
autoimmune diseases in general. This also raised the possibil-
ity of immune intervention across the autoimmune spec-
trum. One approach was a trial of an antibody against the
TCR most frequently used by MS patients, and that was
unsuccessful (Killestein et al., 2002). Another approach is
inducing tolerance to the autoimmune-prone TCR by T-cell
vaccination in MS, which is thought to trigger an anti-
idiotypic immunoregulatory network (Vandenbark et al.,
2008). Such an approach is conceptually interesting but so far
has not been translated into clinical success.

MS and EAE were long considered Th1-mediated diseases.
Similar to other Th1/Th2 dichotomous experimental situa-
tions (e.g. the murine leishmaniasis model), modulation of
both disease susceptibility and established disease activity
was possible by manipulating the differentiation and main-
tenance of Th1/Th2 pathways. However, the discovery of
IL-23, the IL-12-related cytokine that shares the p40 subunit
with IL-23, led to the re-evaluation of all previous work done
with neutralization of p40 or with p40 knockout mice and to
the eventual description of the Th17 cells that are stimulated
by IL-23 and produce IL-17 and other cytokines (IL-21, IL-22)
(Cua et al., 2003; Harrington et al., 2005; Langrish et al.,
2005). This represented a paradigm shift in immunology. The
developmental pathway of murine Th17 cells was also shown
to involve TGF-beta and IL-6, and the in vivo system in which
this was shown was EAE. Subsequent work has shown that,
with some possible variation, these pathways also seem to be
working in the human immune system in similar ways, with
IL-23 having a role in stimulating and maintaining, if
perhaps not inducing, Th17 responses (Korn et al., 2009). It
therefore became obvious that an intervention that targeted
IL-12/23p40, thus down-regulating both Th1 and Th17
responses, is potentially beneficial in MS. The results of the
clinical trial of ustekinumab, a human anti-p40 monoclonal
antibody, in RRMS, were both surprising and disappointing
in that respect (Segal et al., 2008). The lack of clinical or MRI
effect was shown despite the fact that there was evidence that
the antibody did have an immunomodulatory effect. This
study led to another rethinking, and consideration of thera-
peutic options in MS that might be beyond the Th1/Th2/
Th17 split. Some potential options are considered in a recent
review article (Steinman, 2010) and some are discussed below.

IFN-gamma has been one of the most poignant examples
of discrepancy between MS and EAE and a major argument in
the criticism of the EAE model. Moreover, the experience
with this cytokine in MS and EAE and the studies showing its
amenability to inhibition by type 1 interferons have contrib-
uted to the development of the latter compounds as DMTs.
The role of IFNs in EAE and MS is discussed in more detail in
other reviews (Sanvito et al., 2010) but the evidence can be
summarized as follows: treatment of EAE with IFN-gamma
suppresses disease, while its blockade enhances disease in
EAE. The opposite is true for MS, where intravenous IFN-
gamma treatment in a clinical trial induced relapses in a
substantial number of participants (Panitch et al., 1987). A

non-placebo controlled trial of an anti-IFN-gamma antibody
showed that it suppressed MS, in contrast to an anti-TNF
antibody, which did not (Skurkovich et al., 2001).

There are more examples of discrepancies between thera-
peutic successes in EAE and MS, including some chemokine
antagonists. The reasons for these translational failures are
likely multiple and complicated but such results always
offer the opportunity to rethink the pathogenesis of MS and
the therapeutic approaches to it. Also, occasionally they
provide new insights into fundamental immunological
mechanisms.

Unpredicted EAE and MS treatment failure
There is an informative category of studies where most of the
results of the EAE studies concur with those in MS and are
both negative, despite high biological plausibility of the
intervention used as potentially beneficial in EAE and MS.
This is usually when there are results in EAE that are discrep-
ant or can be interpreted differently as beneficial or ineffec-
tive (for example a transient positive effect in EAE or a
difference between antibody neutralisation and knockout
mouse results). The most poignant example in this category is
the work related to the role of TNF in EAE and MS (reviewed
in Lim and Constantinescu, 2010a). In some papers address-
ing the deficits of EAE as a model for MS, TNF is often used as
an example of inconsistency between MS and EAE results. In
EAE, disease is said to be suppressed by antibody neutralisa-
tion of TNF, but in fact a closer look at the literature shows
that this only occurs in adoptive transfer EAE models. In MS,
trials of anti-TNF biological lenercept showed an unexpected
worsening of the disease and further study of anti-TNF agents
has been discontinued (The Lenercept Multiple Sclerosis
Study Group, 1999). Moreover, demyelination has been
reported in recipients of anti-TNF biologicals for other
inflammatory diseases; these are contraindicated when these
inflammatory conditions coexist with MS (Mohan et al.,
2001). The initial studies of anti-TNF biologicals in MS pre-
ceded the EAE studies with TNF (or TNF plus Lymphotoxin)
knockout mice, and were only supported by passive transfer
EAE studies, but not by active EAE studies. Even in a TNF
knockout mouse model, a delay in EAE onset despite retained
susceptibility led to the more emphasized conclusion that
TNF is important for early disease, rather than that it is not
absolutely required for EAE (Frei et al., 1997). Anti-TNF anti-
body transiently delayed superantigen induced relapses in
EAE; however, it was subsequently shown that other cytok-
ines (IL-12/IL-23 and possibly IL-6) were more important in
suppressing superantigen-induced relapses (Lim and Con-
stantinescu, 2010a).

In conclusion, the results of TNF in EAE and MS are not
incongruous, as they agree more than they disagree; on
balance, they seem to argue against a significant and unique
pathogenic role of TNF in demyelinating disease, and against
TNF as a therapeutic target in MS.

Discrepancies in therapeutic effects of in
different EAE models depending on the
experimental conditions
The above example with TNF neutralisation having an effect
in passive but not active EAE illustrates that different results
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are sometimes seen in different EAE models or even in the
same model depending on the experimental conditions.
There are many such examples. The differential susceptibility
to EAE of male versus female mice is well known. Other
examples are given in Table 6.

Besides the discrepancies that can result from the experi-
mental conditions, other factors that must be taken into
account when extrapolating from EAE to MS are the dual or
multiple actions of the same target, and that some of these
actions might be contradictory. Depletion of macrophages
suppresses EAE but impedes nerve regeneration and remyeli-
nation (Huitinga et al., 1990; Kotter et al., 2001); a whole
range of cytokines have opposing actions in EAE that need to
be considered when designing MS treatments. A special issue
of the Open Autoimmunity Journal is dedicated to the most
representative of these cytokines (Gran and Becher, 2010).

Prostaglandin E-2 (PGE-2) enhances both Th1 and Th17
and thus augments EAE but also has BBB stabilizing effects
that partially counteract the former effects (Esaki et al., 2010).
Osteopontin also enhances both Th1 and Th2 responses but
also has a role in remyelination and is neuroprotective
(Braitch and Constantinesco, 2010). These examples and
others underscore the complexity of inflammatory demyeli-
nation and the numerous factors that come into play when
considering therapeutic possibilities. Moreover, some of the
subtle or delayed effects may be hidden, for example inter-
ference with neural repair or remyelination may be missed in
a study dealing only with immunological aspects of EAE.

Aspects of MS that cannot be tested in animal models. Some
treatments that have shown success in MS and are approach-
ing widespread clinical application have not been tested or
published in EAE. Cladribine, an immunosuppressant
showing remarkable results from phase II and III studies in
RRMS, is not reported to have been tested in EAE (Giovan-
noni et al., 2010).

Alemtuzumab, a monoclonal antibody against human
CD52, is an immunosuppressant that depletes immune cells
achieving a highly suppressive effect on disease activity in
RRMS (Coles et al., 2008). Alemtuzumab does not cross-react
with mouse CD52 and its effects in EAE have not been inves-
tigated. However, there is a recently developed transgenic
mouse expressing human CD52, where effects of alemtu-
zumab have been tested with regard to its other applications
in cancer (Hu et al., 2009). Its effects in EAE would be very
interesting.

Some targets cannot be tested in knockout mouse models
because they are embryonic or neonatal lethal, for example
TGF-beta or Retinaldehyde dehydrogenase type 3 knockout
mice (Hines et al., 1994; Dubinsky et al., 2010). Also, activity
dependent neuroprotective protein (ADNP) which is a neu-
roprotective molecule also amply expressed in the immune
system and capable of immune modulation, has been
reported to suppress EAE and its knockout mouse is neonatal
lethal (Braitch et al., 2010).

A very important situation where animal models such as
EAE cannot answer MS-related question is related to compli-

Table 6
Examples of conditions that determine variations in EAE outcome

Condition Examples References

Strain SJL/J, etc EAE susceptible; BALB/c etc EAE resistant (Constantinescu et al., 2001)

Sex Females more susceptible (Butterfield et al., 1999)

Passive transfer versus
active induction EAE

TNF neutralization effective in passive but not
active

(Selmaj et al., 1991)
(Teuscher et al., 1990)

Early versus adult immunization 3 week old mice resistant to EAE; adult mice
susceptible

(Smith et al., 1999)

Timing of intervention • IL-12 during remission or after anti-CD40-CD40
ligand interaction blockade: induces relapse;
IL-12 at immunization: suppresses EAE

• Pertussis toxin at immunization (adjuvant):
induces EAE

• Pertussis toxin before EAE immunization or at
peak disease: prevention/suppression

(Constantinescu et al., 1999; Gran et al., 2004)
(Stromnes and Goverman, 2006a,b)
(Ben-Nun et al., 1993)

Environment Specific pathogen-free: TCR transgenic mice
develop EAE

Germ free environment: TCR transgenic mice
protected

(Goverman et al., 1993; Lafaille et al., 1994)

Dose/affinity effects High dose/affinity APL may worsen disease
Low dose/medium affinity APL (same sequence)

can ameliorate disease

(Nicholson et al., 1995)
(McCue et al., 2004)

Exogenous administration versus
endogenous blockade

IL-12/IL-23 administration versus
anti-IL-12/IL-23p40 neutralisation at
immunization

(Constantinescu et al., 1998; Gran et al., 2004;
Touil et al., 2010)
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cations restricted to humans, for example infectious diseases
with humans as only hosts. We mentioned the JC virus
example above (Kleinschmidt-DeMasters and Tyler, 2005;
Langer-Gould et al., 2005; Clifford et al., 2010).

Increasing epidemiological and biological evidence impli-
cates the Epstein-Barr virus (EBV) in the pathogenesis of MS
(Serafini et al., 2007; Ascherio and Munger, 2010). Many
hypotheses have been put forward about how EBV might
modify the immune system and make people more prone to
MS, including its ability to immortalize B cells and enhance
their antigen presenting function. EBV is also a human spe-
cific virus, and all these mechanistic studies, as well as any
potential studies of EBV-targeted therapies would not be
appropriate in rodent EAE (unless one were dealing with a
mouse with a human immune system).

MS can affect a variety of specific human factors such as
fatigue or induce subtle cognitive disturbances. It also has
wide psychological, social and economic implications. None
of these can be modelled properly in experimental models.

Transgenic and knockout mouse models. The development of
transgenic and knockout technology has made a major
impact in the understanding of the pathogenesis of EAE and
has contributed to the widespread use of the mouse models of
EAE (Steinman, 1997; Gold et al., 2006). Many of the emerg-
ing or future therapeutic interventions have been tested in
these models, and the confirmation of a potential benefit of
a (immuno)pharmacological blocking intervention through
the appropriate knockout or transgenic model adds credence
to the validity of the approach. However, caution is needed in
interpreting the results of such studies, due to the well-
known redundancy in the immune system and to some
extent in the nervous system, or to some early developmental
roles of some immune or neural molecules that might no
longer be relevant for the adult rodent. In some instances
conditional knockouts may be preferable (Korn et al., 2008).

Testing MS symptomatic treatment in EAE. EAE has served as a
model for developing and validating symptomatic treatments
in MS as well. A study in EAE has shown the role of cannab-
inoids in controlling spasticity and tremor (Baker et al.,
2000). More recently, bladder symptoms of MS could be mod-
elled in EAE and the utility of future drugs for neurogenic
bladder dysfunction in MS could be tested in this model
(Altuntas et al., 2008; Al-Izki et al., 2009).

Pharmacokinetics. Although rodent EAE has been an impor-
tant model for understanding the pathogenesis and develop
treatments for MS, relatively few published studies have
included pharmacological evaluations of potential drugs,
such as pharmacodynamic and pharmacokinetic studies.
This is justified in part by the largely immune active rather
than classical pharmaceutical repertoire of therapies used,
but also by the difficulties extrapolating the results to
humans. As discussed above, pharmacokinetic studies of a
promising compound are sometimes done on larger animals
and mechanistic studies are done in EAE. One notable study
looking at retinoid modulation of EAE, however, has mea-
sured the exogenous retinoid pharmacokinetics in rats
(Vergelli et al., 1997).

Requirements for translational success in MS of a putative treat-
ment as predicted by EAE studies. EAE results, especially those
taken in relative isolation, cannot easily predict the success of
a given therapeutic intervention in MS. For an immunologi-
cal intervention in EAE to be matched in MS, the appropriate
MS population (i.e. RRMS) needs to be tested. For example,
photopheresis has positive effects on the inflammatory activ-
ity in rat EAE (Cavaletti et al., 2001). In humans it was studied
in progressive MS, where it was not successful (Rostami et al.,
1999); but a small study shows it to be successful in RRMS,
which validates the EAE results (Cavaletti et al., 2006). Many
EAE treatments are tested at disease induction, therefore for a
prophylactic effect, whereas, for obvious reasons, they are
then tested in established MS. Of course, with the increased
availability of first and second line DMTs, a major unmet
need is developing effective treatments for progressive MS
forms. EAE resembling secondary progressive MS can be
established in some mouse models (Tsunoda et al., 2005;
Hampton et al., 2008). However, the development of pure
progressive EAE models to mimic primary progressive MS is
problematic. Although a very interesting model of partial
immunological tolerance induction shows that it cannot stop
progressive neurodegeneration and thus resembles primary
progressive MS (or one-attack progressive, or transitional MS)
in terms of clinical phenomenology, it is not clear that is
actually shares pathogenic mechanisms with primary pro-
gressive MS; however, it does create opportunities to study
treatments targeted to the progressive neurodegeneration in
MS (Pryce et al., 2005).

Notwithstanding the importance of the right MS popula-
tion being selected for translational studies, there are some
aspects of the EAE studies themselves that may help to
develop a successful MS drug.

Generally, corroboration of successful results from several
EAE studies is a better predictor of translational success.

Listed below are several qualities of a putative drug that
we consider, with the obvious variations depending on the
drug being tested, requirements for translational success
in MS:

1 Biological plausibility
2 Convincing, significant differences from appropriately

chosen controls in initial studies
3 Evidence of biological effect (e.g. down-regulation of a

known pathogenic pathway for the chosen EAE model)
4 Validation with congruent results in further EAE models/

refinement of the same model (e.g. transfer EAE, EAE
induced by another neuroantigen, EAE in another
species/strain)

5 Clinical, immunological, histological (imaging) results are
consistent

6 Efficacy in both males and females
7 Efficacy both as prophylactic and therapeutic (in estab-

lished disease) treatment
8 Efficacy both in monophasic and relapsing EAE models
9 Synergistic effects of synergistic drugs/interventions

10 Antagonistic effects of antagonistic drugs/interventions
11 Where possible and appropriate, confirmation in

transgenic/knockout mice
12 Ideally dual action, immunomodulatory and neuropro-

tective
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13 Careful monitoring of CNS effects (effects on axon,
myelin, brain/spinal cord volume, etc.) shows favourable
effects/no adverse effects

14 Careful monitoring of long term effects, not only on
immune/nervous system

15 Validation in another model of autoimmune disease if an
immune-active drug; validation in another model of neu-
rodegenerative disease if neurobiologically active drug

16 Where appropriate and possible, validation in primate MS
model, where pharmacokinetics/ pharmacodynamics
studies support use in MS; Clinical, immunological, his-
tological (imaging) results are consistent; results favour
treatment versus control despite clinical and genetic
heterogeneity.

Concluding remarks. In conclusion, EAE has contributed to
the development, validation, and testing of MS drugs and
even more remarkably, to the understanding of the patho-
genesis of MS. The multitude of models and results under-
scores the complexity both of MS and of this model. It also
indicates that studies in the model need to be carefully tai-
lored to the pathogenesis or therapy question, and that
results showing a high degree of consistency between various
models and experimental conditions are more likely to lead
to translation into therapeutic success.
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